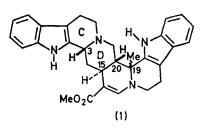
785


Nuclear Magnetic Resonance Evidence for the Stereochemistry of the Indole Alkaloids Roxburghine B and E

By C. CISTARO, L. MERLINI, R. MONDELLI,* and G. NASINI (Politecnico, Instituto di Chimica,† 20133 Milano, Itaty)

Summary Analysis of the n.m.r. spectrum of roxburghine E allows the relative configuration at centres 3, 15, and 20 to be deduced; the results are correlated with those for roxburghine B and D.

STRUCTURE (1) has been assigned¹ to roxburghine D, an indole alkaloid isolated, together with the four diastereoisomers, roxburghines A, B, C, and E, from a variety of *Uncaria* (Rubiaceae). The relative configuration shown in (1) was obtained by conformational analysis on the basis of

† Centro del C.N.R. per lo Studio delle Sostanze Naturali.

n.m.r. data. From biogenetical arguments² it is most likely that the configuration at centre 15 is α .

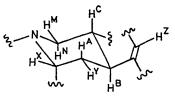

We report here an analysis of the n.m.r. spectrum of roxburghine E (2). The parameters in the Table (chemical shifts and coupling constants) were obtained by iterative analysis³ of the seven-spin system corresponding to the protons ABCMNXY, and by decoupling experiments. If it is assumed, as usual, that ring D is more stable in the chair conformation, the coupling constants require that the C/D ring junction be *cis* and the D/E junction be *trans*. As a

		TABLE			
Chemical shift (CDCl ₃ ª)			Coupl	ing constants	
δ _Α δ _Β δ _C δ _M δ _N δ _X δ _Y	$\begin{array}{c} 1 \cdot 612 \\ 2 \cdot 001 \\ 2 \cdot 188 \\ 3 \cdot 119 \\ 3 \cdot 259 \\ 4 \cdot 470 \\ 3 \cdot 350 \end{array}$		Jax Jec Jey Jcm Jcn	11-35 3-40 3-21 11-82	
δz δме-19	$7.32 \\ 1.63$		Jxy Jbz	$2 \cdot 50 \\ 0 \cdot 9$	

^a In acetone the signals do not undergo an appreciable solvent shift.

¹ L. Merlini, R. Mondelli, G. Nasini, and M. Hesse, Tetrahedron, 1970, 26, 2259.

² G. A. Morrison, Fortschr. Chem. Org. Naturstoffe, 1967, 25, 269.
³ A. A. Bothner-By and S. Castellano, 'Computer Programs for Chemistry,' ed. D. F. deTar, Benjamin, New York, 1968, p. 10.

consequence, the orientation of the protons on rings D and E must be the same as in roxburghine D.

On the basis of the conformational arguments already used¹ for (1), it follows that both roxburghine D and E have the same relative configuration at centres 3, 15, and 20. Thus the two alkaloids must be epimers at C-19. The difference between the chemical shift for the C-19 methyl group, and that of the neighbouring protons H^B and H^c is consistent with this finding. It has already been established¹ that the configuration at C-19 in (1) is opposite to that in (2), via dehydrogenation to the enantiomeric dehydroroxburghines.

Since it has also been established¹ by equilibration that roxburghine B and E are epimers at C-3, the present results also give the relative configuration at centres 3, 15, and 20 of roxburghine B.

(Received, 17th April 1972; Com. 640.)